公害防止管理者等国家試験 重要ポイント & 精選問題集 騒音・振動関係 正誤表

頁・行	誤(旧)	正 (新)
9.上2	$10^{6.5} + 10^{7.3} = (10^7 \times 10^{-0.5}) + (10^7 + 10^{0.3})$	$10^{6.5} + 10^{7.3} = (10^7 \times 10^{-0.5}) + (10^7 \times 10^{0.3})$
25.下3	…を選択 <u>肢</u> しましょう。	…を選択しましょう。
29・上 8~9	dB の平均を計算すると 60 <u>+</u> 10log3≒60 <u>+</u> 5=	dB の平均を計算すると 60-10log3≒60-5=
	<u>65</u> dB となりますが、算術平均は(60+50+40)	55dB となりますが、算術平均は(60+50+40)
	÷3=50 となり <u>15</u> の差が生じてしまいます。	÷3=50となり5の差が生じてしまいます。
82・上 6	…に対し、騒音の防止の方法…	…に対し、振動の防止の方法…
82・上 13	…に対し、騒音の防止の方法…	…に対し、振動の防止の方法…
82.下8	…設置状況及び使用の方法並びに騒音の防止の	…設置状況等について…
	方法について…	
161・下 2	…なります。速く地表の気温より上空の気温が…	…なります。地表の気温より上空の気温が…
162・【4】音波の干渉・上 2	…干渉といいます。図 <u>1</u> は逆方向に伝搬する…	…干渉といいます。図4は逆方向に伝搬する…
189.下1~3	…2~60Hz では約(エ)「 <u>0.8</u> 」秒、100~200Hz では	…2~60Hz では約(エ)「 <mark>2</mark> 」秒、100~200Hz では
	約(オ)「 <u>2</u> 」秒です。	約(オ)「0.8」秒です。
	したがって、 <u>(3)</u> が正しい組合せです。	したがって、(5)が正しい組合せです。
	正解 >> (3)	正解 >> (5)
261•解説上 4	$P=0.3\times\pi=0.9\underline{7}2\mathrm{m} (\pi=3.14)$	$P = 0.3 \times \pi = 0.942 \text{m}$ $(\pi = 3.14)$
上 10	$R = (0.7 - 0.1) \frac{0.972}{0.071} \times 2$	$R = (0.7 - 0.1) \frac{0.942}{0.071} \times 2$
282・図 3・下部の式	$N = \frac{2}{\lambda} \underline{\lambda} = \frac{\delta f}{170}$	$N = \frac{2}{\lambda} \delta = \frac{\delta f}{170}$
305-上5	$T_{60} = ($ 中略 $) = \frac{0.161V}{A}$	$T_{60} = ($ 中略 $) = \frac{0.161V}{A}$
	$A = \frac{0.161V}{T_{60}\underline{S}}$	$A = \frac{0.161V}{T_{60}}$
312・表 2 タイトル	表 2 吸音機構と吸音の周波数特性	表 2 遮音構造と音響透過損失の周波数特性
343•解説(4)	(4)1/3 オクターブバンドでは中心周波数 125Hz の	(4)1/3 オクターブバンド中心周波数 125Hz の通
	通過帯域は 112Hz~140Hz <u>なので、周波数 100Hz</u>	過帯域は、112Hz~140Hz です。 <mark>周波数 100Hz</mark> と
	の純音のみがこの範囲に含まれます。よって、音圧	150Hz は通過帯域に含まれていませんが、減衰帯
	レベル 70dB がそのままバンド音圧レベルとなりま	域の周波数成分も含まれるため、少なくとも 0dB に
	す。0dB ではありません。誤り。	はなりません(332ページ・図4参照)。誤り。
364•解説上 6	$L_{16} = 68 + 10\log 16 = \underline{65} + 10\log (4 \times 4)$	$L_{16} = 68 + 10\log 16 = 68 + 10\log (4 \times 4)$
367・下 4~3	79 79 →レベル差 0、補正値 3 →79+3=8 <u>I</u> dB	79 79 →レベル差 0、補正値 3 →79+3=82dB
	8 <u>1</u> 85 →レベル差 <u>4</u> 、補正値2 →85+2=87dB	82 85 →レベル差 3、補正値 2 →85+2=87dB

368・上 7	$L_{\mathrm{Aeq},12} = 10 \log \left\{ \frac{1}{12} 10^{L_{\mathrm{A1}}/10} \times t_h + 10^{L_{\mathrm{A2}}/10} \times (12 - t_h) \right\}$	$L_{\text{Aeq},12} = 10 \log \left\{ \frac{1}{12} \left(10^{L_{\text{A1}}/10} \times t_h + 10^{L_{\text{A2}}/10} \times (12 - t_h) \right) \right\}$
401・下 5	$f_0 = \frac{\underline{1}}{\sqrt{\frac{1}{0.25} + 1}} = \frac{10}{\sqrt{5}} = \cdots$	$f_0 = \frac{10}{\sqrt{\frac{1}{0.25} + 1}} = \frac{10}{\sqrt{5}} = \dots$
482•下1	ここで、ω: <u>各</u> 周波数 (角振動数) …	ここで、ω: <mark>角</mark> 周波数(角振動数)…